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Summary N-EM : Results

We introduce Neural Expectation Maximization (N-EM), a novel A differentiable clustering procedure that learns a representation of a Shapes
unsupervised framework for representation learning that splits scene composed of primitive object represetations. = ‘ RNN-EM and N-EM recover the o~ —
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images into distinct objects (perceptual grouping) and represent It consists of a spatial mixture model with K components that are o | invididual shapes accurately I:I# N :Er

each one separately. parametrized by vectors 6 = [0+, ..., 0] :\ - when they are separated (a, b, f),

& Everyimage is modeled as a spatial mixture model with K A non-linear function f (a neural network) computes a distribution 5 5 even when confronted with the
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same shape (b). n"l? Fa®

& A neural network implement the statistical model of the RNNI'EM isdabledto hlandle m,OSt J :
individual components by transforming the representations ;. overlap (c, d) and only sometimes ;‘7 lil: O

into distributions over pixel values. 37‘9 H Z P 5137,7 z2 "‘/Jz) — ‘ | Wi, 3 fails {e).
& We use generalized EM to jointly infer 1) the assignment of .
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pixels to components 2) the representations for all components.

For a fixed function f we can compute a Maximum Likelihood Estimate of @ using generalized _ _ = T -
& The result is a differentiable clustering procedure that can be Expectation Maximization, which iteratively optimizes the expected data log-likelihood: .HHEHHHEH“HEEH |
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trained to recover the constituent objects of a given input. o o
j g p Q(6,0°%) = P(z|z,¢°'%) log P(x, z|v)

components, each summarized by a distributed representation 0y

€ We apply our framework to synthetic perceptual grouping z .| Al a a a a al &l al a A A A

tasks and empirically verify that it yields the intended behavior. — :ﬁ o &
Reassign the pixels to each cluster according to the posterior of Z B [ | S | (& & o ﬁ |& |a A ja A s F3
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€ This approach naturally extends to other domains.
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Improve the expected value O of the complete data likelihood by gradient ascent: 20
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ko k RNN-EM significantly outperforms a m= Recurrent AE
& Many high-level real world tasks such as reasoning and physical standard recurrent autoencoder in
interaction require identification and manipulation of . . . o terms of next-step prediction on
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g The unrolled gradient ascent updates form a computational graph that is end-to-end a
, . . . . . e ying shapes with 3/4/5 shapes.
conceptual entities differentiable. We refer to this trainable procedure as Neural Expectation Maximization.
& A first step towards solving these tasks is the automated ,' | ,' | This highlights the fact that J

Binomial Cross-Entropy Error

discovery of distributed symbol-like representations. grouping is useful for

® Therefore we seek to split the input into separate entities E next-step prediction.
and represent their information content efficiently, based on i E 5 i 3 Shapes 4 Shapes 5 Shapes
statistical regularities of the data that can be learned in an | ' | ’
unsupervised fashion.

:\ymg MNIST (each digit moves in a random direction)

€ Here we are concerned with the domain of images where
entities naturally form groups of pixels (objects) that share
mutual information.

& We are therefore interested in learning a perceptual grouping

(or clustering) to recover these entities, and a corresponding By relaxing the structure and converting the above graph into an RNN

structured representation that can later be used in a symbol- we obtain a more powerful version that we call RNN-EM
like fashion.

The statistical regularities required to cluster the pixels of an image into objects are encoded
in the weights of the neural network, which we train to minimize a two part loss function: Temporal coherence provides

D K useful cues about the grouping

Cffect of Hyperparameter K L@) =~ yixlog Pl zislbis) — (1 — vix) Dicr [P || P (i o, 2] of pixels.

Train Test Test Generalization | S— —_— - :
- =1 k=1 intra-cluster loss inter-cluster loss The learned grouping dynamics

e e T are stable and generalize
0.969 = 0.006 3 0.970 £ 0.005 3 5 0.972 + 0.007 : .. : .
0.997 + 0.001 100 2 .00 0014 - 0.015 The intra-cluster loss maximizes the data log The inter-cluster loss minimizes the expected beyond the sequence-length on
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0.614 £ 0.003 5 0.614 £ 0.003 3 0.886 + 0.010 likelihood (the same as for EM) and encourages out-of-cluster data log likelihood. It which they were trained.
U878 == W00 : LS == WO 3 battoll = ublis each cluster to better reconstruct its pixels. encourages each cluster to specialize

Inun paule.)

K AMI 4 obj. K AMI 4 obj. K AMI

Adjusted Mutual Information

0 GitHub/SjoerdvanSteenkiste/Neural-EM * Authors contributed equally to this work.



